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Control of Navier–Stokes equations by means of mode
reduction
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Department of Chemical Engineering, Sogang Uni6ersity, Seoul, Republic of Korea

SUMMARY

In a previous work (Park HM, Lee MW. An efficient method of solving the Navier–Stokes equation for
the flow control. International Journal of Numerical Methods in Engineering 1998; 41: 1131–1151), the
authors proposed an efficient method of solving the Navier–Stokes equations by reducing their number
of modes. Employing the empirical eigenfunctions of the Karhunen–Loève decomposition as basis
functions of a Galerkin procedure, one can a priori limit the function space considered to the smallest
linear sub-space that is sufficient to describe the observed phenomena, and consequently, reduce the
Navier–Stokes equations defined on a complicated geometry to a set of ordinary differential equations
with a minimum degree of freedom. In the present work, we apply this technique, termed the
Karhunen–Loève Galerkin procedure, to a pointwise control problem of Navier–Stokes equations. The
Karhunen–Loève Galerkin procedure is found to be much more efficient than the traditional method,
such as finite difference method in obtaining optimal control profiles when the minimization of the
objective function has been done by using a conjugate gradient method. Copyright © 2000 John Wiley
& Sons, Ltd.

KEY WORDS: control of Navier–Stokes equations; Karhunen–Loève Galerkin procedure; mode reduc-
tion

1. INTRODUCTION

Optimal control theory of viscous fluid motion has important applications in engineering and
science. Our ability to actively or passively manipulate a flow field to effect a desired change
is of immense technological importance. Some applications of control of fluid flows in
industrial processes may be the viscous drag reduction to minimize the drag force on a
submerged body, the control of mixing patterns in chemical reactors to enhance the reactor
performance, separation postponement, lift enhancement, or noise suppression.
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With the problems of flow control, one usually encounters substantial difficulties because of
the mathematical complexities of the Navier–Stokes equations. The Navier–Stokes equations,
which are a distributed parameter system, has an almost infinite degree of freedom with strong
non-linearity. Although computational tools that combine modern computational fluid dy-
namics and rigorous optimization methods have been recently applied to the flow control
problems [2,3], these analyses are usually very complicated mathematically, and there are still
technical difficulties to be overcome before they become practical design tools. One of the most
important prerequisites for the successful application of advanced control techniques to fluid
flows of industrial importance is the development of a reliable dynamic model, with small
degrees of freedom, that is not mathematically complicated but is still applicable to the cases
of irregular domains.

Until now, several research groups [4,5] have used the Karhunen–Loève decomposition as
a procedure for computation of coherent structures (empirical eigenfunctions) in turbulence
from experimental or numerical data of flow fields. Usually these empirical eigenfunctions
have been used to interpret the statistical characteristics of the turbulent flow. Furthermore, by
employing these empirical eigenfunctions and introducing additional drastic approximations to
the Navier–Stokes equations, they could derive reduced order models for turbulent flows [6]
or transitional flows [7]. These reduced order models [6,7] do not simulate the fluid flows
exactly, but are found to approximately reproduce some interesting characteristics of turbu-
lence or transitional flows, such as intermittency and bifurcation sequences. Although these
reduced order models are not exact, there have been some attempts to apply the dynamical
system methodology to these low order models to control fluid flows [8]. Because the original
Karhunen–Loève decomposition technique [5–7] is applicable only to stationary stochastic
fields, such as turbulence or oscillatory transitional flows, it could not be employed in the
rigorous control schemes of fluid flows. But recent works [1,9,10] have extended the
Karhunen–Loève decomposition to the analysis of non-stationary, non-homogeneous deter-
ministic as well as stochastic fields, and allowed the derivation of rigorous reduced order
models that simulate the given systems almost exactly. This extension of the original
Karhunen–Loève decomposition is called the Karhunen–Loève Galerkin procedure [1,9,10],
and can be adopted in rigorous implementation of modern control schemes for viscous fluid
flows.

Previously, we have explained the Karhunen–Loève Galerkin procedure, which can reduce
the Navier–Stokes equations defined on a irregular geometry to a faithful low dimensional
dynamic model, and have suggested it as an efficient computational tool for flow control or
optimization [1]. In the present work, we examine the feasibility and efficiency of the
Karhunen–Loève Galerkin procedure as a method of solving the pointwise control problems
of the Navier–Stokes equation.

The detail of the Karhunen–Loève Galerkin procedure, which is a Galerkin method
employing the empirical eigenfunctions of the Karhunen–Loève decomposition, is well docu-
mented in Park and Lee [1] and Park and Cho [9,10]. In the following sections, we shall
describe the system and governing equations with relevant boundary conditions. Following
that, the procedure of construction of empirical eigenfunctions shall be explained in detail, and
the low dimensional dynamic model for the system under consideration shall be suggested.
Finally, the problem of pointwise control of the viscous fluid flow shall be solved by employing
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the Navier–Stokes equation and the low dimensional dynamic model, respectively, and the
efficiency and accuracy of the Karhunen–Loève Galerkin procedure for the solution of control
problems of viscous fluid flow shall be assessed. In both cases, the minimization of the
objective function has been performed by means of a conjugate gradient method.

2. THEORY

2.1. The system and go6erning equation

We consider a viscous incompressible fluid flow in a grooved cavity as shown in Figure 1. The
flow is induced not only by the lid velocity, but also by a forcing located at the position
(0.625, 0.25) indicated in Figure 1(a). The point source forcing is approximated mathematically
by the function f(t)d10(x−0.625)d10(z−0.25) where dn(x) is defined by:

dn(x)=
n

2 cosh2(nx)
(1)

and f(t) is an arbitrary time-varying function. This function dn(x) becomes the Dirac delta
function d(x) as n approaches infinity. The shape and strength of the point source forcing is
plotted in Figure 1(b). The unsteady flow field of the system is obtained by solving the
following incompressible Navier–Stokes equation with forcing.

r
�(7
(t

+7 ·97
�

= −9P+m927+ irf(t)d10(x−x*)d10(z−z*) (2)

Figure 1. (a) System under consideration. The flow is induced by both the lid velocity undergoing a step
change from 1 to 5, and a point source located within the domain. (b) The shape and strength of the

point source.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 535–557



H. M. PARK AND M. W. LEE538

9 ·7=0 (3)

where 7 is the velocity vector, P the pressure, r the density (=1), m the viscosity (=1), i is the
unit vector in the x-direction, x*=0.625 and z*=0.25. For the specific case under consider-
ation, Equations (2) and (3) may be rewritten as follows.

r
�(u
(t

+u
(u
(x

+w
(u
(z
�

= −
(P
(x

+m
� (2

(x2+
(2

(z2

�
u+rf(t)d10(x−x*)d10(z−z*) (4)

r
�(w
(t

+u
(w
(x

+w
(w
(z
�

= −
(P
(x

+m
� (2

(x2+
(2

(z2

�
w (5)

(u
(x

+
(w
(z

=0 (6)

where u and w are the x- and z-components of the velocity field 7, respectively. The relevant
initial and boundary conditions are follows:

Initial conditions

7(x, z, t=0) the steady velocity field with the lid velocity=1.0 and f(t)=0 (7)

Boundary conditions

·z=1.0 (upper boundary); u=5, w=0 (8)

· all other boundaries; u=w=0 (9)

The problem at hand is that of controlling the system above to produce a state variable
7(x, T), at the final time T, that is as close as possible to a target flow field 7T(x). We aim at
achieving this goal through a pointwise control f(t)d10(x−x*)d10(z−z*), which appears as a
source or sink in Equation (4), in the spatial domain. Our concern is to achieve the goal while
minimizing the cost of control f(t). This suggests the problem

min J( f ) (10)

where

J( f )=
1
2
&

V
(7(x, T)−7T(x, T))2 dV+

e

2
& T

0

f(t)2 dt (11)

and e is a small positive constant. To ensure that the target 7T(x) is a reachable state, we
determine 7T(x) by integrating Equations (4)–(6) with a given function f(t), and set 7T(x)=
7(x, t=T). In the present work, we consider two different target functions determined by
integrating Equations (4)–(6) with the following controls.
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(Case a) f(t)=
!2000 t if 05 t50.05

2000(0.1− t) if 0.055 t50.1
(12a)

(Case b) f(t)=50
�

1+sin
2pt
T
�

for 05 t50.1 (12b)

where T=0.1. Each of these controls and corresponding target function 7T(x) are depicted in
Figure 2(a) and (b) and Figure 3(a) and (b), respectively. In Figure 2(b) and Figure 3(b), the
solid line is used for the positive values and the dotted line for the negative values of the
stream function.

2.2. Construction of empirical eigenfunctions

Before applying the Karhunen–Loève Galerkin procedure to reduce the degree of freedom of
the system, we need a set of empirical eigenfunctions which capture the system behaviour
satisfactorily, at least for the ranges of possible variation of the control variable f(t). These
useful eigenfunctions can only be obtained from an ensemble of snapshots which are
representative of the system characteristics [1,9,10]. The low dimensional dynamic model to be
used in the solution of optimal control problem should predict the velocity profile 7(x, t)
exactly for various trajectories of f(t) that include not only the optimal trajectory, but also
other trajectories appearing during the iterative minimization of the objective function
(Equation (11)) by means of the conjugate gradient method. Assuming that the controls f(t)
appearing during the iterative procedure may be represented as linear combinations of
sinusoidal modes (i.e. a Fourier series representation), with the highest frequency wmax=10, we

Figure 2. (a) The control given by Equation (12a). (b) Target velocity field 7T(x) determined by Equation
(12a).
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Figure 3. (a) The control given by Equation (12b). (b) Target velocity field 7T(x) determined by Equation
(12b).

pick up f(t)=100 and f(t)=50(1+sin(2pwmaxt/T)) as the control trajectories to generate
snapshots of {7n}. We have found that the snapshots obtained with the controls of intermedi-
ate frequencies are encompassed by this set of snapshots {7n} obtained with the control of the
lowest frequency ( f(t)=100) and with the control of the highest frequency ( f(t)=50(1+
sin(2pwmax t/T))). Thus, Equations (4)–(6) are solved with f(t)=100 and the resulting tran-
sient velocity fields 7(x, t) are recorded at a constant time interval to generate 500 snapshots.
Similarly, with f(t)=50(1+sin(2pt/T)), we generate 500 snapshots. As explained in Park and
Lee [1], it is necessary to make these snapshots satisfy homogeneous boundary conditions. For
this purpose, we obtain the steady flow field 7r(x) by solving the following set of equations:

r7r ·97r= −9Pr+m927r (13)

9 ·7r=0 (14)

with the following boundary conditions, where the x- and z-components of the 7r are denoted
as ur and wr :

· at the top boundary; ur=ai, wr=0 (15)

· at all other boundaries; ur=wr=0 (16)
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Here ai is the lid velocity at t50, i.e. 1, and the value of the lid velocity imposed during the
process (t\0), af, is taken to be 5. Then each velocity field of the following set given by

�
7n−

af

ai

7r
�

, n=1, 2, . . . , 1000 (17)

satisfies homogeneous boundary conditions, i.e. all components of the velocity vanish at the
boundary. To these 1000 snapshots satisfying homogeneous boundary conditions, we apply the
Karhunen–Loève decomposition technique to get empirical eigenfunctions in the order of their
importance in characterizing the system. Figure 4(a)–(h) shows the 1st, the 2nd, the 3rd and
the 4th eigenfunctions, with the corresponding normalized eigenvalues l1=0.823306, l2=
0.161588, l3=1.06908×10−2, l4=2.66563×10−3, respectively. Also shown in Figure 5(a)–
(d) are typical eigenfunctions with smaller eigenvalues, i.e. the 9th, the 10th, the 11th and the
12th eigenfunctions, with the corresponding normalized eigenvalues, l9=4.10828×
10−5, l10=1.08621×10−5, l11=3.99717×10−6, l12=1.47815×10−6. Figure 4(a)–(d) re-
veals that the empirical eigenfunctions with large eigenvalues represent the large scale
structures of the velocity field 7. On the contrary, from Figure 5(a)–(d), we find that
eigenfunctions with small eigenvalues represent the small scale structures caused by the
pointwise forcing and the system boundaries.

2.3. The low dimensional dynamic model

In this section, we develop working equations for the low dimensional dynamic model of the
system that is to be used later in the solution of optimal control problem. As the first step of
the Karhunen–Loève Galerkin procedure, which is a Galerkin method employing the above
empirical eigenfunctions as basis functions, we represent the velocity field 7(x, t) as a linear
combination of empirical eigenfunctions as follows:

7(x, t)= %
M

i=1

ai(t)fi(x)+b7r(x) (18)

where fi is the ith empirical eigenfunction, ai(t) is the corresponding spectral coefficient,
b=a/ai, where a is the lid velocity which changes from ai to af at t=0, and M is the total
number of empirical eigenfunctions employed in the Karhunen–Loève Galerkin procedure.
The residual may be expressed as:

R
(7

(t
+7 ·97+9

P
r

−n927− if(t)d10(x−x*)d10(z−z*) (19)

where nm/r. Applying the Galerkin principle, which enforces the residual to be orthogonal
to each of the basis functions,

&
V

R ·fi dV=0 (i=1, 2, . . . , M) (20)
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Figure 4. Some dominant empirical eigenfunctions with large eigenvalues. (a) The 1st eigenfunction. (b)
The 2nd eigenfunction. (c) The 3rd eigenfunction. (d) The 4th eigenfunction.

the Equations (4)–(6) are reduced to the following set of non-linear ordinary differential
equations [1].

Mk

dak

dt
= −n %

M

l=1

alHkl− %
M

l=1

%
M

m=1

alamQklm−b %
M

l=1

alRkl−b(b−1)Ck−Nk

db

dt
+ f(t)Sk

(21a)

with
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Figure 5. Some typical empirical eigenfunctions with small eigenvalues. (a) The 9th eigenfunction. (b)
The 10th eigenfunction. (c) The 11th eigenfunction. (d) The 12th eigenfunction.

ak(t=0)=

&
V

(7(x, t=0)−b7r) ·fk dV&
V

fk ·fk dV
(21b)

The coefficients in Equation (21a) may be expressed in terms of the x- and z-components of
the eigenfunctions, fk

u and fk
w, as follows:
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Mk
&

V
(fk

u)2+ (fk
w)2 dV (22)

Nk
&

V
(fk

uur+fk
wwr) dV (23)

Hkl
&

V

�(fk
u

(x
(f l

u

(x
+
(fk

u

(z
(f l

u

(z
+
(fk

w

(x
(f l

w

(x
+
(fk

w

(z
(f l

w

(z
�

dV (24)

Qklm
&

V
fk

u�f l
u (fm

u

(x
+f l

w (fm
u

(z
�

+fk
w�f l

u (fm
w

(x
+f l

w (fm
w

(z
�

dV (25)

Rkl
&

V
fk

u�f l
u (ur

(x
+ur

(f l
u

(x
+f l

w (ur

(z
+wr

(f l
u

(z
�

+fk
w�f l

u (wr

(x
+ur

(f l
w

(x
+f l

w (wr

(z
+wr

(f l
w

(z
�

dV (26)

Ck
&

V
fk

u�ur

(ur

(x
+wr

(ur

(z
�

+fk
w�ur

(wr

(x
+wr

(wr

(z
�

dV (27)

Sk
&

V
fk

ud10(x−x*)d10(z−z*) dV (28)

where ur and wr are the x- and z-components of the reference velocity vector 7r(x). Equation
(21) is a set of ordinary differential equations, which may be solved by using the Adams–
Bashforth method for the non-linear terms, and the Crank–Nicolson method for the linear
terms. The performance of the low dimensional dynamic model (Equation (21)) is evaluated by
comparing its solution with the finite difference solutions of Equations (4)–(6), which is
regarded as the exact solution when the number of grids adopted is (80×80) for a given
control f(t). Usually, the relative error of the low dimensional dynamic model decreases as the
number of eigenfunctions employed increases up to the optimal number of empirical eigen-
functions. However, further increase of number of eigenfunctions beyond the optimal number
deteriorates accuracy because the eigenfunctions with very small eigenvalues are contaminated
with round-off errors. The optimal number of empirical eigenfunctions is found to be 12, and
thus, we are going to employ 12 eigenfuntions for the construction of the low dimensional
dynamic model in the present work. Figure 6(a)–(b) depict a comparison of velocity compo-
nents obtained by the Karhunen–Loève Galerkin procedure with those by the finite difference
method at specific locations indicated in each figure when f(t)=50(1+sin(10pt/T)). Figure
6(a) shows the x-component velocity u, while Figure 6(b) is for the z-component w. It is shown
that the exact solution by the finite difference method, and the solution from the low
dimensional dynamic model of the Karhunen–Loève Galerkin procedure, are almost the same
at every point investigated.
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Figure 6. The temporal variation of velocity components selected points indicated in the figures when
f(t)=50(1+sin (10pt/T)). (a) x-component of the velocity vector, u. (b) z-component of the velocity

vector, w.

2.4. Solution of optimal control problems employing the original partial differential equation

Before presenting the algorithm for solving optimal control problems employing the low
dimensional dynamic model, we first describe how to solve the same problems by the finite
difference solution of the original Navier–Stokes equation.

To minimize the objective function (Equation (11)), we need the gradient of J, 9J, which is
defined by

dJ( f )=
& T

0

9Jdf dt (29)

where T, the final time, is 0.1 s. The function 9J can be obtained by introducing an adjoint
variables j(x, t) and q(x, t), and rewriting the objective function as follows:

J( f )=
1
2
&

V
(7(x, T)−7T(x))2 dV+

e

2
& T

0

f(t)2 dt

−
& T

0

&
V

j ·
�(v
(t

+7 ·97+9
P
r

−n927+ if(t)d10(x−x*)d10(z−z*)
n

dV dt

+
& T

0

&
V

q(9 ·7) dV dt (30)

The variation of J, dJ, is then given by the following equation:
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dJ( f )=
& T

0

fdf dt+
&

V
(7(x, T)−7T(x)) ·d7(x, T) dV−

& T

0

&
V

d7t ·j dV dt

−
& T

0

&
V

(d7 ·97) ·j dV dt−
& T

0

&
V

(7 ·9(d7)) ·j dV dt−
& T

0

&
V

(9dP/r) ·j dV dt

+n
& T

0

&
V

(92d7) ·j dV dt−
& T

0

df(t)
&

V
d10(x−x*)d10(z−z*)jx(x, t) dV dt

+
& T

0

&
V

q(9 ·d7) dV dt (31)

where j= (jx, jz). Integrating dJ by parts, both in space and time, and exploiting the initial
and boundary conditions for 7 and d7, the gradient of J and 9J in Equation (29) is found to
be as follows:

9J= f(t)−
&

V
d10(x−x*)d10(z−z*)jx(x, z, t) dV (32)

while the adjoint variables j= (jx, j z) and q must satisfy:

(j

(t
−j ·(97)T+7 ·9j=9q−n92j (33)

9 ·j=0 (34)

with the starting condition

j(x, t=T)=7(x, T)−7T(x) (35)

and boundary conditions

j(x, t)=0 on (V (36)

The set of Equations (33)–(36) can be solved by means of the simple algorithm which is
adopted for the solution of the state Equations (4)–(6). The Fletcher–Reeves method [11],
which is one of the conjugate gradient methods, is successfully applied to the minimization of
the objective function, using the gradient J determined by Equation (32). The search direction
or the conjugate direction at the first step is determined by:

d0(t)=9J(t)= f(t)−
&

V
d10(x−x*)d10(z−z*)jx(x, z, t) dV (37)

Beginning the second iteration step, the conjugate direction is given by:

dn(t)=9Jn(t)+gndn−1(t) (38)
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where

gn=

& T

0

(9Jn(t))2 dt& T

0

(9Jn−1(t))2 dt
(39)

and n is the iteration number. The optimal step length rn in the direction of dn is obtained by
minimizing J( f n−rndn) with respect to rn. Formally, J( f n−rndn) is expressed as:

J( f n−rndn)=
1
2
&

V
(7(x, T, f n−rndn)−7T(x))2 dV+

e

2
& T

0

( f n−rndn)2 dt (40)

The directional derivative of 7 at f in the direction of d, denoted as d7, is defined by

d7=
l

i
m e�0 7( f+ed)−7( f )

e
(41)

Then, the term 7(x, T, f n−rndn) in Equation (40) is approximated by

7(x, T, f n−rndn)=7− (d7)rn (42)

Substituting Equation (42) into Equation (40) and partially differentiating it with respect to rn,
and setting the resulting equation equal to zero, the value rn that minimizes J( f n−rndn) is
obtained as

rn=
dJn

Kn (43a)

where

Kn
&

V
d7(x, T, d) ·d7(x, T, d) dV+e

& T

0

d2 dt (43b)

and

dJn
&

V
(7(x, T)−7T(x)) ·d7(x, T)dV+e

& T

0

f(t)d(t) dt (43c)

The updated control f n+1(t) is obtained as

f n+1(t)= f n(t)−rndn(t) (44)

The sensitivity equation which determines d7 is given as follows:
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(

(t
d7+d7 ·97+7 ·(9d7)= −9

dP
r

+n92d7− idfd10(x−x*)d10(z−z*) (45)

9 ·d7=0 (46)

The relevant initial and boundary conditions are

d7(x, t=0)=0 (47a)

d7=0 at all boundaries (47b)

Equations (45)–(47) can also be solved by using the simple algorithm. The present algorithm
is summarized below.

1. Assume f(t) and calculate the flow field 7(x, t) by means of Equations (4)–(6).
2. Solve the adjoint problem (Equations (33)–(36)).
3. 9J is determined by Equation (32).
4. The conjugate direction dn(t) is given by Equation (38) with gn determined by Equation

(39).
5. Solve the sensitivity Equations (45)–(47).
6. The step length in the conjugate direction dn(t) is determined by Equation (43(a)–(c)).
7. The updated control is obtained by Equation (44).
8. Repeat the above procedure until convergence.

2.5. Solution of optimal control problems employing the low dimensional dynamic model of the
Karhunen–Loè6e Galerkin procedure

Employing the low dimensional dynamic model Equation (21) obtained by means of the
Karhunen–Loève Galerkin procedure, one can also find the optimal control f(t) that mini-
mizes the objective function (11). The degree of freedom of Equation (21) is only 12, whereas
the degree of freedom of the original partial differential equation, which is equivalent to the
grid number in the finite difference approximation ×3 (i.e. u, w, P), is about 2×104. The
difference in degree of freedom between the low dimensional dynamic models and the original
partial differential equations shall become much larger as the dimensionality of the problem
change from two-dimensional to three-dimensional. Therefore, the procedure of optimal
control problem employing the low-dimensional dynamic model is predestined to be much
faster than that employing the original non-linear partial differential equation.

The objective function (Equation (11)) may be rewritten in terms of the empirical eigenfunc-
tions fi and corresponding spectral coefficients ai as

J( f )=
1
2

%
M

i=1

(ai(T)−ai
T)2Mi+

e

2
& T

0

f(t)2 dt (48)

where
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ai
T

&
V

(7T(x)−b7r) ·fi dV&
V

fi ·fi dV
(49)

Following the same procedure as that in Section 2.4, the objective function (Equation (48))
may be rewritten with the introduction of adjoint variables li(t) (i=1, 2, . . . , M):

J( f )=
1
2

%
M

i=1

(ai(T)−ai
T)2Mi+

e

2
& T

0

f(t)2 dt+ %
M

k=1

& T

0

lk(t)

×
1

Mk

�
−n %

M

l=1

alHkl− %
M

l=1

%
M

m=1

alamQklm−b %
M

l=1

alRkl−b(b−1)Ck−Nk

db

dt
+f(t)Sk

n
(50)

Then the gradient of the objective function, 9J, is found after integrating dJ by parts in
time, and exploiting the initial conditions for ai(t) as follows:

9J=ef(t)+ %
M

k=1

lk

Mk

Sk (51)

The adjoint variables lj(t) ( j=1, 2, . . . , M) must then satisfy the following ordinary
differential equations:

dlj

dt
= %

M

k=1

lk

Mk

�
nHkj+ %

M

m=1

amQkjm+ %
M

l=1

alQklj+bRkj

n
( j=1, 2, . . . , M) (52a)

with the following starting conditions at t=T :

lj(t=T)= (aj(T)−aj
T)Mj ( j=1, 2, . . . , M) (52b)

where Mj is defined by Equation (22). The gradient of the objective function, 9J, given by
Equation (51) is exploited in the conjugate gradient method of Fletcher and Reeves [11] to
minimize the objective function (48). The sensitivity equation for this case is given by:

d
dt

(dak)=
1

Mk

�
−n %

M

l=1

dalHkl− %
M

l=1

%
M

m=1

dalamQklm

− %
M

l=1

%
M

m=1

aldamQklm−b %
M

l=1

dalRkl+d(t)fSk
n

(k=1, 2, . . . , M) (53a)

with the initial conditions
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dak(t=0)=0 (k=1, 2, . . . , M) (53b)

Here, d(t) is the conjugate direction which is updated in each iteration by the following rule

dn(t)=9Jn+gndn−1(t) (54)

where

gn=

& T

0

(9Jn(t))2 dt& T

0

(9Jn−1(t))2 dt
(55)

with g0=0, and n is the iteration number. The value of rn that minimizes J( f n−rnan) is
obtained, as previously, by differentiating J( f n−rnan), with respect to rn, and setting the
resulting equation equal to zero.

rn=
%
M

i=1

(ai(T)−ai
T)dai(T)Mi+e

& T

0

f n(t)dn(t) dt

%
M

i=1

(dai(T))2Mi+e
& T

0

dn(t)2 dt
(56)

where dai (T) is the value of dai at t=T, Mi is defined by Equation (22). The Fletcher–Reeves
algorithm as applied to the optimal control problem employing the low dimensional dynamic
model follows the procedure outlined below:

1. Assume f(t) and calculate ak(t) (k=1, 2, . . . , M) using Equations (21a and b).
2. Solve the adjoint problem with appropriate terminal conditions (Equations (52a) and

(52b)).
3. The gradient of the objective function, 9J, is given by Equation (51).
4. The conjugate direction at the nth iteration is given by Equation (54), where gn is given by

Equation (55).
5. Solve the sensitivity equation with the relevant initial conditions, i.e. Equations (53a and

b).
6. Determine rn that minimizes J( f n−rnan) by Equation (56).
7. The optimal control is updated by

f n+1(t)= f n(t)−rndn(t) (57)

8. Repeat the above calculations until convergence.

3. RESULTS

In this section, we assess the accuracy and efficiency of the present method of solving the
control problem of the Navier–Stokes equation employing the dimensional model obtained by
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the Karhunen–Loève Galerkin procedure, as compared with the conventional method employ-
ing the original partial differential equation. For brevity of communication, we call the method
employing the original partial differential equation the FDM-CG, while the method employing
the low dimensional model is called the KLG-CG. In both methods, the minimization of the
objective function has been done by means of the conjugate gradient method suggested by
Fletcher and Reeves [11]. The following criterion is used to stop the iteration process of the
conjugate gradient method:

J( f (i+1))−J( f (i))Be1 (58)

where J is defined by Equation (11), f (i) is the control at the ith iteration and e1 is a prescribed
small number.

As with the first example, we consider the case where the target profile 7T(x) is given by
Figure 2(b) with e=5×10−5 in Equation (11). Figure 7 shows the convergence rate of the
iteration procedure of both methods. We find that the value of the objective function decreases
rapidly during the first couple of iterations. This figure also reveals that the convergence rate
of the KLG-CG is slightly faster than that of FDM-CG.

Figure 7. Convergence rate of conjugate gradient methods. The convergence rate of the KLG-CG is
slightly faster than that of the FDM-CG.
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Figure 8 depicts the optimal control f(t) obtained by the KLG-CG in comparison with that
by the FDM-CG. Also shown in the same figure is the original control f(t) given by Equation
(12a), which has been used to obtain the target velocity field 7T(x). As shown in Figure 8, the
profile of optimal control obtained by the KLG-CG has almost the same shape as that by the
FDM-CG, the energy of both of these optimal controls being much less than that of the
original control given by Equation (12a). Figure 9 shows the states at the final time t=T,
obtained by the FDM-CG (Figure 9(b)) and the KLG-CG (Figure 9(c)), which are indistin-
guishable from the target velocity field 7T(x) (Figure 9(a)).

The next example is the case where the target velocity field 7T(x) is given by Figure 3(b) and
the value of e in Equation (11) is 5×10−5. The optimal control f(t), obtained either by the
KLG-CG, or by the FDM-CG, is shown in Figure 10, together with the original control,
Equation (12b), which is employed to obtain the target 7T(x). This figure also shows that both
the KLG-CG and the FDM-CG yield almost the same optimal trajectory of forcing f(t), the
energy of both of these optimal controls being much less than that of the original control
employed to obtain the target velocity field.

Figure 8. The profiles of the optimal control obtained either by the FDM-CG, or by the KLG-CG, for
the target velocity field of Figure 2(b). The original control, Equation (12a), is also displayed for

comparison.
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Figure 9. The comparison of the final state, 7(x, t=T), obtained either by the FDM-CG or by the
KLG-CG, with the target velocity field 7T(x) given by Figure 2(b). These three velocity fields are virtually
indistinguishable. (a) The target velocity field. (b) The final state obtained by FDM-CG. (c) The final

state obtained by KLG-CG.

Figure 11 compares the transient flow fields when the control is given by Equation (12a)
f(t), which is employed to obtain the target 7T(x) of Figure 2(b), and when f(t) is the optimal
trajectory for the same target velocity field. Unless there is control action, there will be two
counter-rotating vortices, a negative one in the upper region (drawn with solid lines) and the
other one, which is positive in the lower region (drawn with dotted lines). However, because
of the control action, a third negative vortex appears near the bottom. We may think that the
energy of the control is somewhat proportional to the size of the third negative vortex near the
bottom of the cavity. With the control given by Equation (12a) f(t), the third vortex always
exists from the very outset before it settle down to the target field, this consuming a large
amount of energy. On the contrary, with the optimal f(t), it only appears near the final time
to fit the target field.

To quantify the results of the present study, we split the objective function defined by
Equation (11) into two parts:

J=J1+eJ2 (59a)

where

J1=
1
2
&

V
(7(x, T)−7(x))2dV (59b)

and

J1=
1
2
& T

0

f(t)2 dt with T=0.1 (59c)
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Figure 10. The profiles of the optimal control obtained either by the FDM-CG, or by the KLG-CG, for
the target velocity field of Figure 3(b). The original control, Equation (12b), is also displayed for

comparison.

Then J1 measures the distance of the final state from the target and J2 denotes the energy
of the control. The magnitude of the parameter e in Equation (59a) determines the relative
importance of J1 and J2. For example, if the cost of control is expensive, we take larger values
of e.

Figure 12(a) and (b) show the variation of the optimal values of J1 and J2 with respect to
e when the target 7T(x) is given by Figure 2(b). As e is increased, the value of J1 for the
optimal control increases, while the optimal value of J2 decreases. In other words, as the
importance of the cost of control, i.e. the e value, increases, the distance between the final state
7(x, T) and the target 7T(x) becomes larger, but the energy of the control decreases when the
optimal control is adopted in the system.

One of the most important results in the present investigation is the comparison of CPU
time required to obtain the optimal control f(t) by employing either the FDM-CG or the
KLG-CG. When the ultrasparc workstation is used, one iteration of FDM-CG requires 24.94
min, while one iteration of KLG-CG requires only 4.2 s. The number of iterations needed to
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Figure 11. Comparison of the transient flow fields when f(t) is given by Equation (12a) and f(t) is the
optimal control.
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Figure 12. (a) The variation of the distance between the final state 7(x, T), and the target 7T(x), J1, with
respect to e when the target velocity field is given by Figure 2(b). (b) The variation of the energy of the

control, J2, with respect to e when the target velocity field is given by Figure 2(b).

reach the converged optimal profile is 100 for the FDM-CG, and 50 for the KLG-CG. Thus,
the FDM-CG consumes 2485.7 min before yielding the optimal control profile. On the
contrary, only 3 min 38 s, is needed for the KLG-CG to produce the same profile of optimal
control. This drastic reduction on CPU time is easily expected from the fact that the degree of
freedom of the low dimensional model is far less than that of the original partial differential
equation. As the difference in the degree of freedom between the low dimensional dynamic
models and the original partial differential equations shall become much larger as the
dimensionality of the problem increases, the reduction of CPU time with the use for KLG-CG,
instead of FDM-CG, shall be much more significant for three-dimensional problems.

4. CONCLUSION

The Karhunen–Loève Galerkin procedure is employed for the solution of optimal control
problem of the Navier–Strokes equation. The objective function, which is determined by the
distance between the final state 7(x, T) and the target velocity field 7T(x), along with the
energy of the control, is minimized by using the conjugate gradient method. This method of
solving the optimal control problem, called the KLG-CG in the present paper, has been
compared with the traditional method employing the original partial differential equation
(FDM-CG) in terms of accuracy and efficiency. The present investigation reveals that the
KLG-CG yields profiles of optimal control as accurate as the FDM-CG, for various target
velocity fields 7T(x) with several values of e in Equation (11). As the degree of the freedom of
the low dimensional dynamic model employed in the KLG-CG is much less than that of the
original partial differential equation which is adopted in the FDM-CG, the KLG-CG yields
accurate profiles of optimal control, with the consumption of much less CPU time, as
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compared with the FDM-CG. This drastic reduction of CPU time will facilitate the real time
implementation of many advanced control theories in various industrial processes.

Although the importance of control of fluid flow has been recognized for a long time, the
development of rigorous, as well as practical, methodologies of flow control has been retarded
because of the inherent mathematical complexities of the Navier–Strokes equations. In this
regard, the Karhunen-Loève Galerkin procedure is suggested as an efficient method of solving
problems of flow control, which is practical enough to be implemented in industrial processes,
but is still keeping mathematical rigor.
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